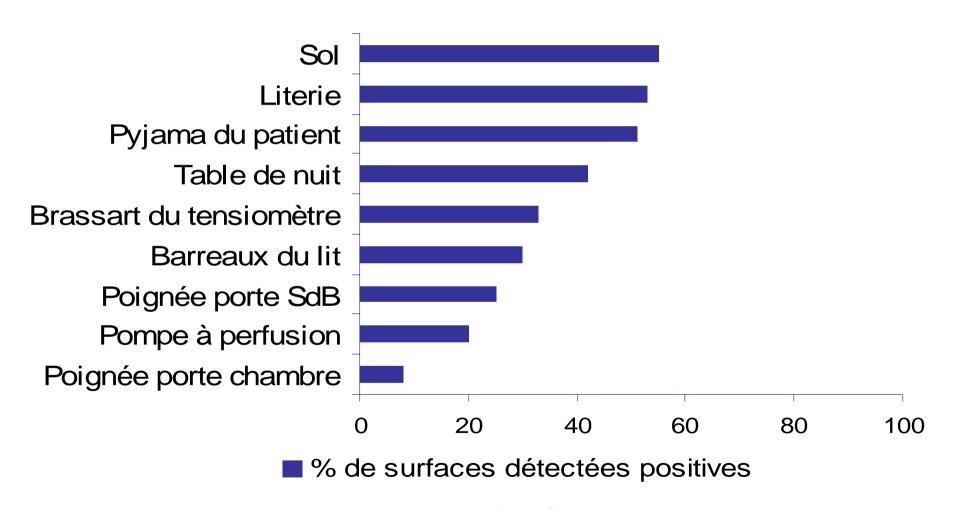


Transmission croisée et Risque épidémique : La part liée à la contamination de l'environnement de soin en établissement de santé et dans les EHPAD

Principales caractéristiques épidémiologiques des BMR (Régnier et coll, 1996)

Environnement?

- Air
- Surfaces
- Eau
- Linges
- Dispositifs médicaux
- Déchets
- Aliments



1ère question : l'environnement hospitalier est-il contaminé ?

- Etude 'chambres d'isolement' patients SARM nez + et/ou colonisations-Infections
- Prélèvements de surfaces, d'air + boites ouvertes (après entretien de la chambre)
- Prélèvements positifs
 - 53,6% pour les surfaces (lits, matelas, barrières, table, chaises) (après 4 semaines : 81%)
 - 28% pour l'air
 - 40,6% pour boites ouvertes

Taux de contamination de l'environnement et du matériel par S. aureus

Boyce J, Infect Control Hosp Epidemiol 1997

Les flores commensales de l'homme

Peau et follicules pileux

Zones lipidiques: 10 ⁶ -10⁷ UFC/cm2 Zones humides: 10⁵-10⁸ UFC/cm2

(staphylocoques corynébactéries)

Estomac: 10-10³ UFC/ml

Lactobacillus, Streptococcus, Staphylococcus, Entérobactéries,

Duodénum et jéjunum:

10²-10⁵ UFC/ml

Lactobacillus, Streptococcus, Bifidobacterium, Entérobactéries,

lléon et caecum:

10³-10⁹ UFC/ml

Colon: 10^{10} - 10^{12} UFC/g

anaérobies

Cavité buccale

10¹⁰ CFU/ml de salive Streptocoques, , Anaérobies

Voies aériennes supérieures

10⁸-10⁹ UFC/cm2 Streptocoques α-hémolytiques, *Neisseria non pathogènes,* Corynébactéries, staphylococcus epidermidis

Cavité vaginale

10⁵-10⁷ UFC/ml ou g prélevé Lactobacilles

10 à 100 bactéries pour 1 cellule humaine

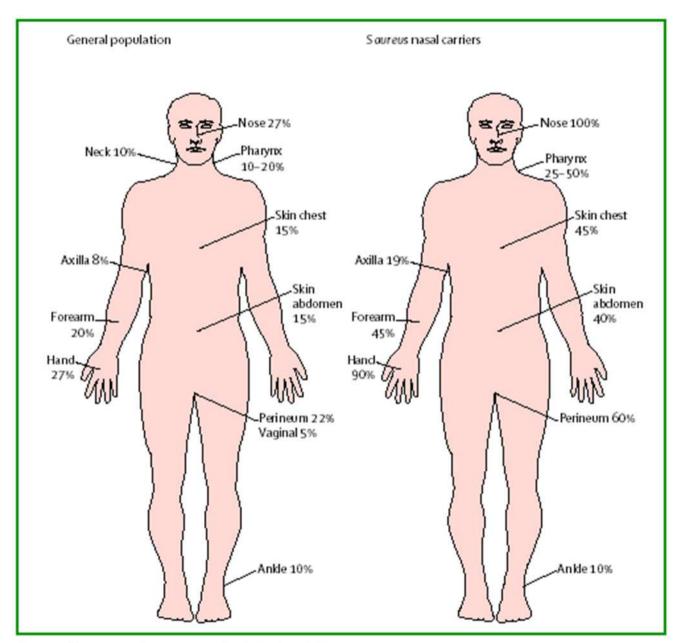
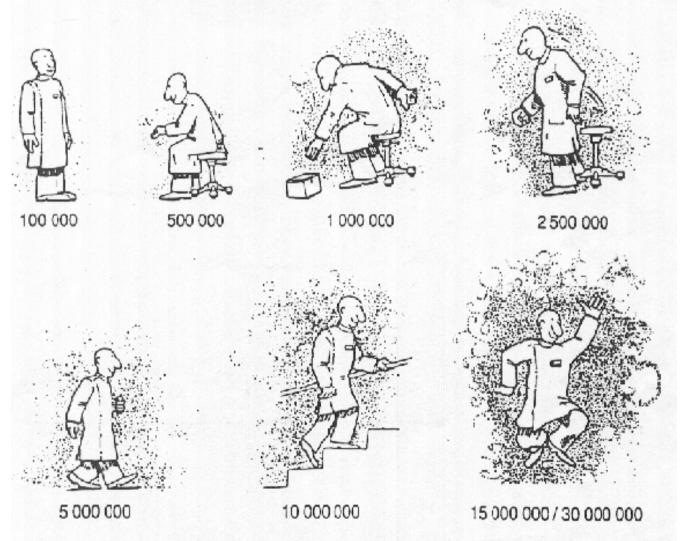



Figure 2: Sources carriage rates per body site in adults

There is an increase in carriage rates at extra-nasal sites within nasal Sources carriers. The mentioned rates are approximations using data from the literature cited in the text.

Nombre de particules de plus de 0,5 µm émises 7/11 par minute selon l'activité de l'individu.

Source : Guide ASPEC « Salles microbiologiquement maîtrisées appliquées aux plats cuisinés et produits équivalents ».

A. baumannii et environnement

Acinetobacter baumannii outbreaks and items involved in environmental contamination.

Suctioning equipment

Washbasin

Bedrail

Bedside

Table

Ventilator

Infusion pump

Sink

Hygroscopic bandage

Shower trolley

Pillow

Mattress

Resuscitation equipment

Stainless steel trolley

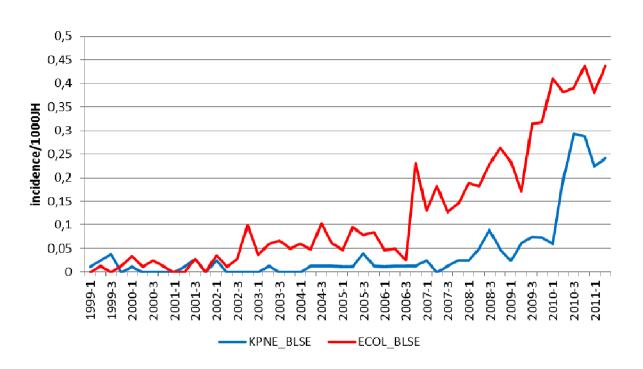
Fournier P E et al. Clin Infect Dis. 2006;42:692-699

C. difficile

Localisation	Taux de contamination	References
Toilette, Lavabo, sol, drap, stéthoscopes	3-10%	Fekety AJM 1981
Lit, sol, bouton d'appel, tenture, toilette	8-49%	McFarland NEJM 1989
Armoires, clenche, toilette, bouton d'appel,	7-37%	Struelens AJM 1991
Sol, toilette, baignoire, draps	14%	Hutin AIDS 1993
Sol, table, tentures, toilettes, lits	27%	Samore AJM 1996
Tensiomètre, lits, armoires	10-14%	Farrin ICHE 1996
Lit, Toilette, sol, lavabo	3-15%	Pulvirenti ICHE 2002

Déjà 24 h après le début de la diarrhée Persistance jusqu'à 40 jours

C. difficile

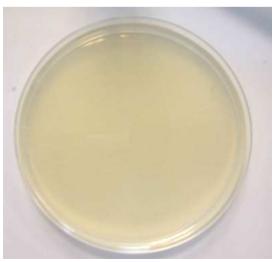

Etude prospective dans 2 unités VIH:

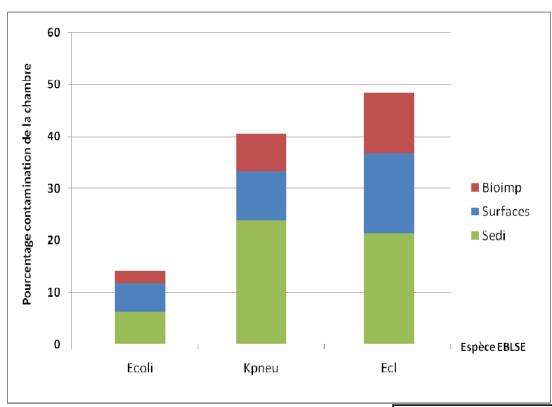
Centre 1: 43/161 patients culture positive (27%)

42/286 culture environnement pos. (15%)

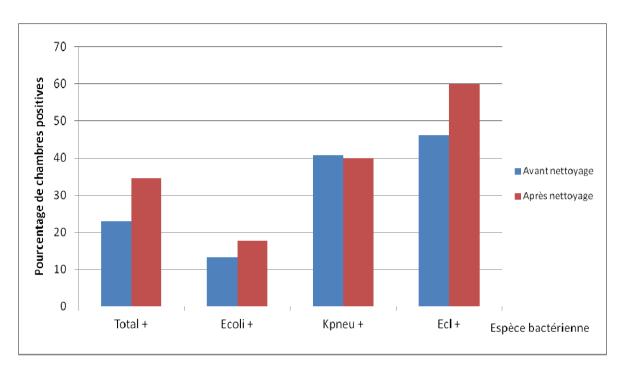
Centre 2: 2/48 patients culture positive (4%)

3/104 culture environnement pos. (3%)


- CHU de Besançon
- E. coli BLSE peu (pas) de TC / K. pneumoniae 1 clone dominant (2/3 des cas) donc TC importante
- Rôle de l'environnement ?


Prélèvements dans les chambres des patients porteurs ou infectés Ec, Kp, Eclo:

- Air: 500Litres d'air grâce à un bioimpacteur
- Sédimentation: 4 heures
- Surface: Poignée de porte, barre de lit, couverture, table adaptable et poignée de renfort (si présente)


Risque relatif de contamination pour:

$$-K. p vs E. c RR = 2.87$$

[1.49;5.52]
 $p = 0.0012$

$$-E. clo vs E. c RR = 3.43$$
[1.81;6.48]
 $p = 0.0001$

$$-E. clo vs K. p RR = 1.19$$

[0.70;2.0]
 $p = 0.52$

	E.coli	K.pneu	E.cloacae
Séries de prélevements	85	37	31
Chambres+	12	15	15
Surfaces+	7	4	8
Bio imp +	3	3	6
Sédi+	8	10	11

Contamination de la chambre après nettoyage vs avant:

$$RR = 1.51 [0.8; 2.8]$$

 $p = 0.22$

	Avant nettoyage	Après nettoyage
Nombre total de prélevements	109	26
Nombre de prélevements +	25	9
Ecoli	68	17
Ecoli +	9	3
Kpneu	27	10
Kpneu +	11	4
Ecl	26	5
Ecl +	12	3

Origines de l'aérobiocontamination

Liée à la présence de <u>particules</u> dont certaines peuvent se charger de <u>bactéries</u> principalement d'origine humaine

Absence de relation linéaire entre les niveaux d'empoussièrement et les niveaux d'aérobiocontamination

Particules : importance du diamètre

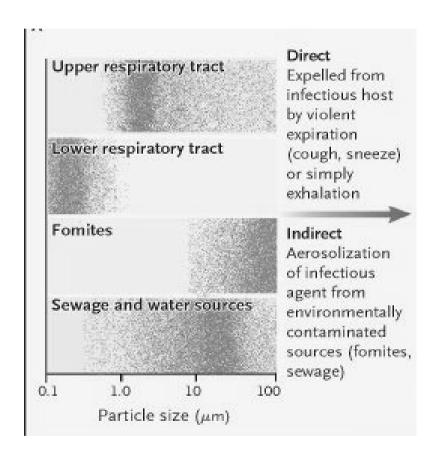
- « créneau bactériologique: 0.5μ 5μ »
- celles autour du μ sédimentent lentement

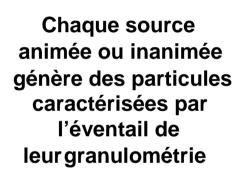
Aerosolisation de particules chargées en bactéries

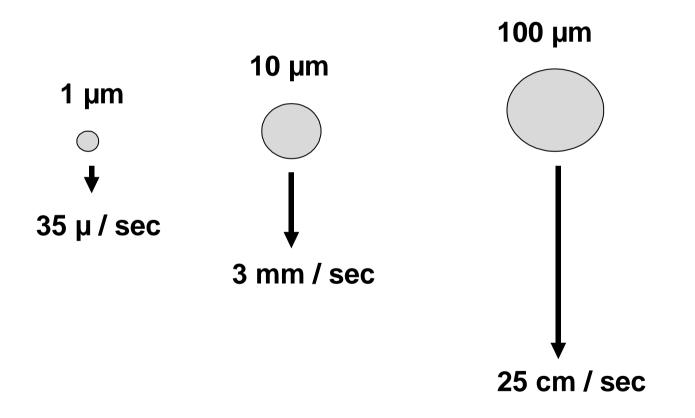
Grippe H1N1 : Aérosolisation de particules chargées en virus

Réfection ...

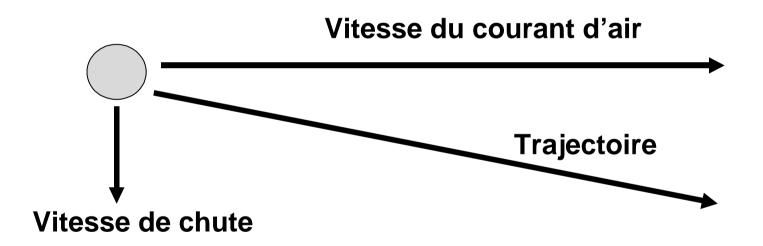
Pansements,



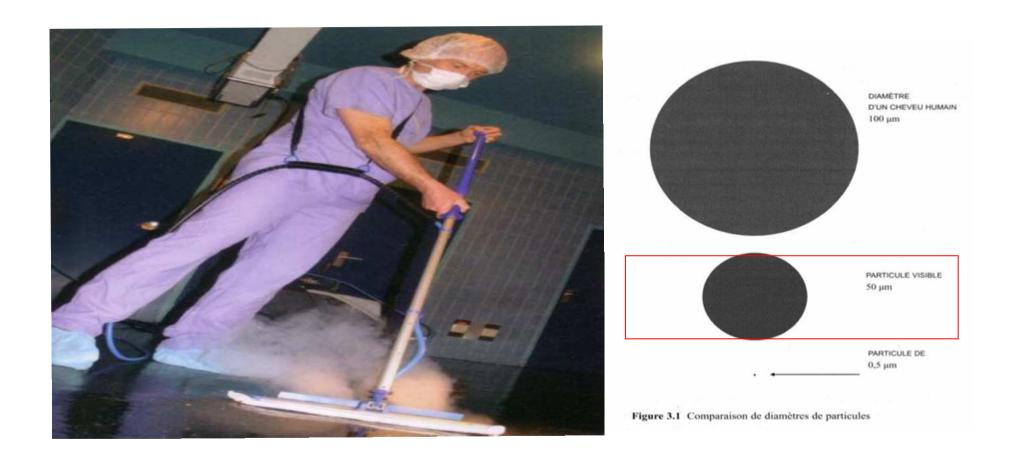

Lits,


... et de nombreuses autres activités

The Aerobiologic Pathway for the Transmission of Communicable Respiratory Disease



Vitesse de sédimentation des particules dans l'air

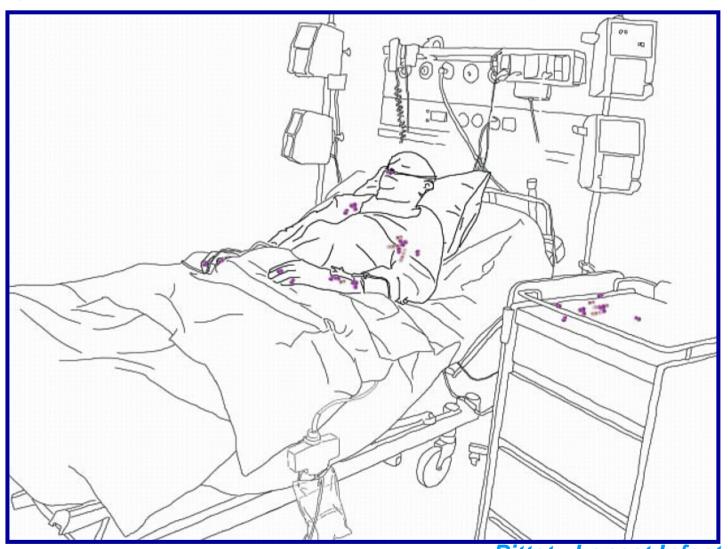

Les particules suivent les mouvements de l'air

Le bionettoyage ... et ses limites

Le temps de sédimentation des petites particules : jusqu'à 8 heures !

Propreté visuelle ...

...Propreté microbiologique


Considérations esthétiques versus sécurité vis-à-vis du risque infectieux

1ère question : l'environnement hospitalier est-il contaminé ?

OUI et beaucoup...

- Notamment pour
 - S. aureus
 - ERV
 - C. difficile
 - A. baumannii
 - P aeruginosa
- Mais aussi
 - EBLSE, EPC......

Les micro-organismes du patient contaminent son environnement

Pittet, Lancet Infect Dis 2006

2ème question : les bactéries persistentelles dans l'environnement ?

BMC Infectious Diseases

Research article

Open Access

How long do nosocomial pathogens persist on inanimate surfaces? A systematic review

Axel Kramer*1, Ingeborg Schwebke2 and Günter Kampf1,3

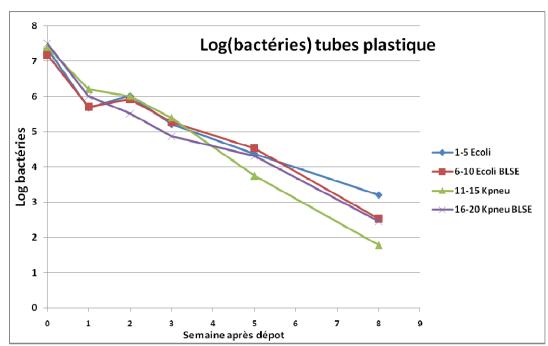
Table 1: Persistence of clinically relevant bacteria on dry inanimate surfaces.

Type of bacterium	Duration of persistence (range)	Reference(s)
Acinetobacter spp.	3 days to 5 months	[18, 25, 28, 29, 87, 88]
Bordetella pertussis	3 – 5 days	[89, 90]
Campylohacter jejuni	up to 6 days	[91]
Clostridium difficile (spores)	5 months	[92–94]
Chlamydia pneumoniae, C. trachomatis	≤ 30 hours	[14, 95]
Chlamydia psittaci	15 days	[90]
Coryne bacterium diphtheriae	7 days – 6 months	[90, 96]
Corvnehacterium pseudatuberaulasis	I_8 days	[21]
Escherichia coli	1.5 hours – 16 months	[12, 16, 17, 22, 28, 52, 90, 97-99]
Enterococcus spp. including VRE and VSE	5 days – 4 months	[9, 26, 28, 100, 101]
Haemophilus influenzae	12 days	[90]
Helicobacter pylori	≤ 90 minutes	[23]
Klebsiella spp.	2 hours to > 30 months	[12, 16, 28, 52, 90]
Listeria spp.	I day – months	[15, 90, 102]
Mycobacterium bovis	> 2 months	[13, 90]
Mycobacterium tuberculosis	I day – 4 months	[30, 90]
Neisseria gonorrhoeae	I – 3 days	[24, 27, 90]
Proteus vulgaris	I – 2 days	[90]
Pseudomonas aeruginosa	6 hours - 16 months; on dry floor: 5 weeks	
Salmonella typhi	6 hours – 4 weeks	[90]
Salmonella typhimurium	10 days - 4.2 years	[15, 90, 105]
Salmonella spp.	I day	[52]
Serratia marcescens	3 days - 2 months; on dry floor: 5 weeks	[12, 90]
Shigella spp.	2 days 5 months	[90, 106, 107]
Staphylococcus aureus, including MRSA	7 days – 7 months	[9, 10, 16, 52, 99, 108]
Streptococcus pneumoniae	I – 20 days	[90]
Streptococcus pyogenes	3 days – 6.5 months	[90]
Vibrio cholerae	I – 7 days	[90, 109]

Survie des microorganismes (S. Van de Steene ARLIN Midi-Pyrénées 2010) :

	Sans matière organique	Avec matières organiques
Bactéries		
Escherichia coli, Klebsiella sp.	±	++
Enterobacter	++	***
Staphylocoques	***	***
S. pyogenes	+++	***
S. pneumoniae	±/+	++
Entérocoques (dont ERG)	+++	+++
Clostridium difficile	***	***
Neisseria sp.	1.5	±
Bordetella pertussis	- 5	+
Acinetobacter baumannii	+++	+++
Pseudomonas aeruginosa		

	Sans matière organique	Avec matières organiques
Virus non enveloppes		
Rotavirus	****	3111
Rhinovirus	**	4.44
Papillomavirus	***	***
Adenovirus	***	***
Virus enveloppés		
Herpes viridae	±	+
VRS	±	*
Grippe	+	++
Virus hépatites B et C	++	***
VIH	•	44/+++
Champignons		
Aspergillus	***	+++
Candida	++	+++

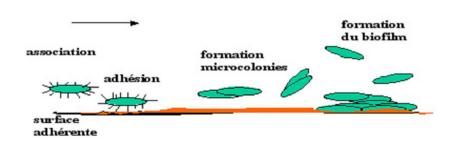

-- 1 semaine

L'environnement est un réservoir important de microorganismes, seuls le nettoyage et le bionettoyage permettent de limiter leur transfert au patient

Résistance des entérobactéries BLSE ou non BLSE sur une surface inerte

Survie sur plastique après 8 semaines:

E.coli > E.coli BLSE K.p BLSE > K.p

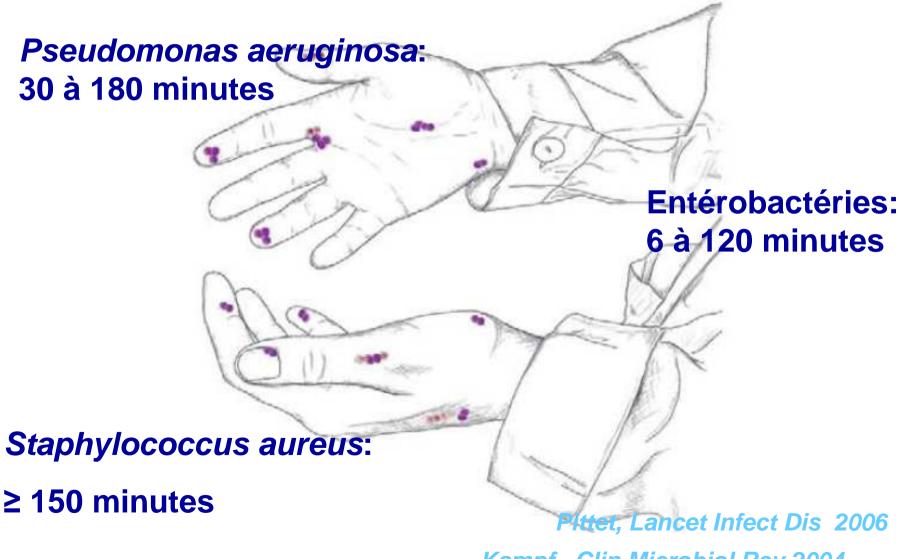

Survie sur verre après 8 semaines:

2ème question : les bactéries persistentelles dans l'environnement ?

OUI, et longtemps

- Cette survie dépend
 - De l'importance de la contamination (inoculum) et donc de la source
 - De la capacité à résister
 - Formation de biofilm
 - Résistance à la dessication
 - Sporulation
 - De la qualité du bio-nettoyage

Schéma d'organisation d'un biofilm



3ème question : les soignants se contaminent-ils à partir de l'environnement?

Prélèvements de mains chez le personnel patients positifs SARM (Boyce et al.)

- Contact 'soins': 70% positives
- Contact environnement : 35% positives
- Analyse des situations épidémiques
 - Souches identiques chez les patients, dans l'environnement et sur les mains des soignants

Les micro-organismes sont capables de survivre sur les mains

Kampf, Clin Microbiol Rev 2004

3ème question : les soignants se contaminent-ils à partir de l'environnement? OUI, mais combien...

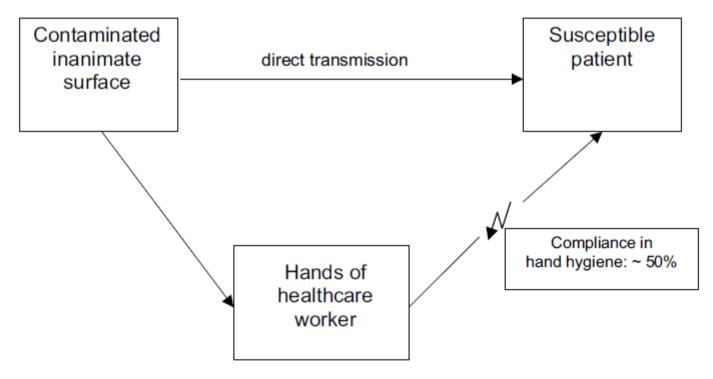


Figure 1
Common modes of transmission from inanimate surfaces to susceptible patients.

4ème question : Quelle est la part de transmission croisée liée à la contamination de l'environnement?

?????? entre 1 et 50%?

- En fonction du pathogène
 - C. difficile, ERV, A. baumannii +++
 - -P, aeruginosa +++
 - -SARM ++
 - EBLSE, EPC +

Quelles solutions?

 Désinfection des mains après contact avec l'environnement : PCC

PS ou PS + PC: que dit le référentiel?

- Il n'y a pas de consensus sur la stratégie de prévention préférentielle
 - uniquement «<u>précautions standard</u> »
 - «précautions standard + complémentaires»
- Il est recommandé que le CLIN puisse définir, parmi ces deux stratégies celle retenue pour prévenir la transmission croisée.

(R3)

Toutefois....

MAIS ... sous certaines conditions :

- mise à disposition de PHA au plus près des soins
- observance de l'hygiène des mains élevée, mesurée sur un nombre important d'observations
- niveau de consommation de PHA élevé, disponible par service
- proportion élevée de recours à la friction avec PHA dans les gestes d'hygiène des mains
- bon usage du port des gants
- expertise / expérience solide de l'EOH et du CLIN
- connaissance solide de l'épidémiologie microbienne, basée sur des prélèvements de dépistage (notion de prévalence)

Politique de PC

- Il est fortement recommandé que le CLIN, dans le cadre d'une politique générale d'établissement (cf R3):
 - définisse les micro-organismes justifiant de précautions complémentaires de type contact (en fonction de la prévalence de ces microorganismes, de l'observance de l'hygiène des mains, et selon le type d'activité ...),

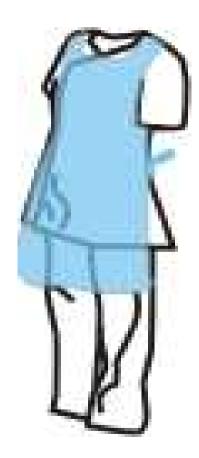
- ...

(R40)

Parmi les microorganismes cités précédemment, il est recommandé de considérer les bactéries suivantes comme nécessitant des précautions complémentaires de type contact :

– ...

En revanche, il n'est pas recommandé de considérer les bactéries suivantes comme nécessitant des précautions complémentaires de type contact :


– ... (R84)

Staphylococcus aureus résistant à la méticilline (SARM)	oui ++
Enterocoque résistant à la vanco.	oui ++
Acinetobacter baumannii phénotype sauvage	non ++
 A. baumannii résistant à la ticarcilline 	non
 A. baumannii sensible <u>uniquement</u> à l'imipenem 	oui ++
Entérobactérie productrice de bétalactamase à spectre étendu	oui ++
Staphylocoque à coagulase négative résistant à la méticilline	non ++
Entérobactéries hyperproductrice de céphalosporinase déréprimée	non sauf en NN
Pseudomonas aeruginosa phénotype sauvage ou résistance isolée à l'imipenem	non
 P. aeruginosa résistant à l'imipenem et à d'autres antibiotiques 	oui
P. aeruginosa résistant ou intermédiaire à ceftazidime	pas de consensus

Quelles solutions?

 Port de gants et port de surblouse ou tablier UU

Quelles solutions?

- Bio-nettoyage quotidien
- Grands principes
 - Porter une tenue vestimentaire adaptée
 - Utiliser le matériel adapté et respecter les procédures
 - Former le personnel chargé de l'entretien des locaux (formation ASH – AS)
 - Évaluer les pratiques et les résultats obtenus
 - Traçabilité

Quelles solutions?

- Désinfection par voie aérienne
 - Produits
 - Peroxyde d'hydrogène
 - Acide peracétique
 - Mode de dispersion
 - Vaporisation
 - Aérosolisation
 - Nébulisation ultrasonique
- Quelles utilisations?
 - Bloc opératoire ?(Lemarié RFL, 2013)
 - Service d 'hématologie?
 - Autres services ?
 - Situations épidémiques non contrôlées

Journal of Hospital Infection

journal homepage: www.elsevierhealth.com/journals/jhin

Short report

Activity in vitro of hydrogen peroxide vapour against Clostridium difficile spores

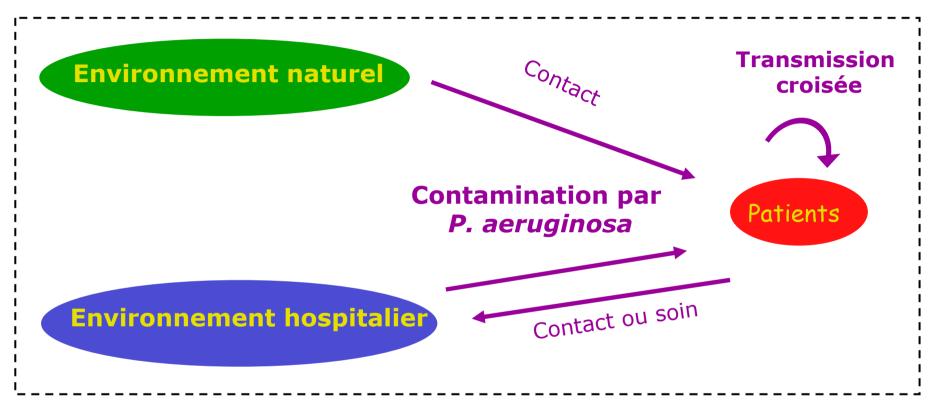
F. Barbut a,*, S. Yezlib, J.A. Otterb

Available online at www.sciencedirect.com

Journal of Hospital Infection

Conclusion: NTD systems are gaining acceptance as a useful tool for infection prevention and control.

Review


The role of 'no-touch' automated room disinfection systems in infection prevention and control

J.A. Otter a, b, *, S. Yezli b, T.M. Perl c, d, F. Barbut e, G.L. French a

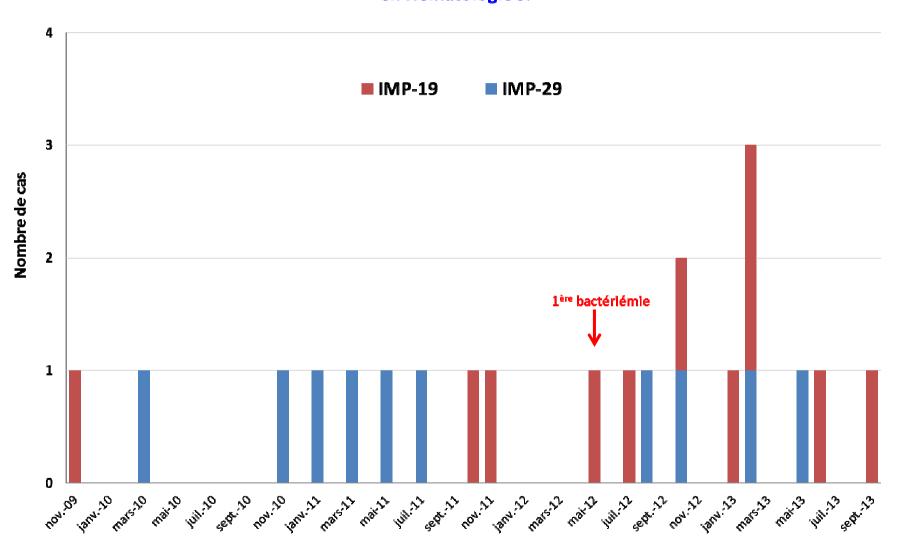
The elephant in the room: on the routine use of hydrogen peroxide vapour decontamination systems in health care

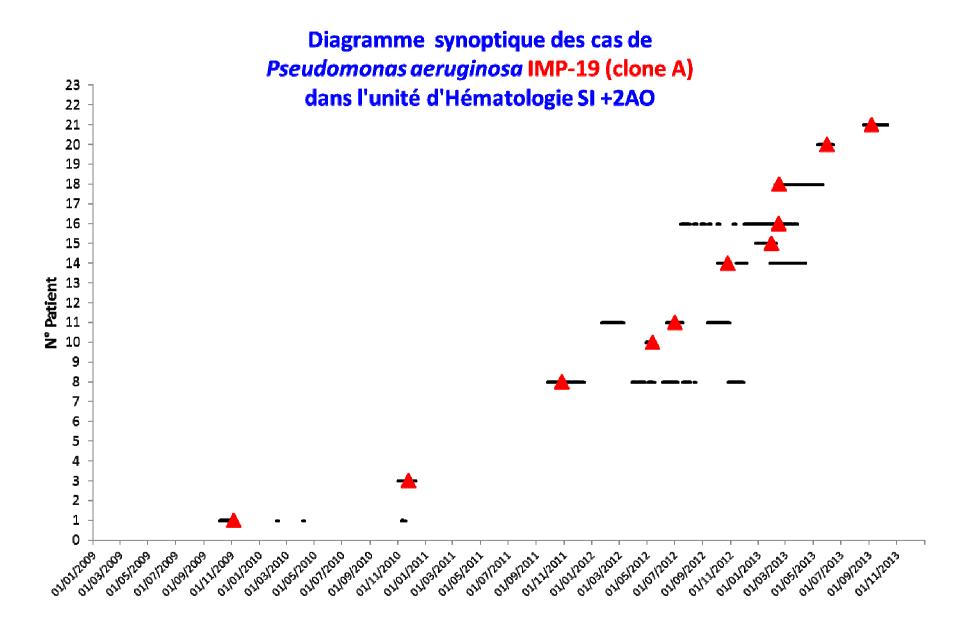
Hydrogen peroxide room disinfection: there is no elephant in the room but there's plenty of evidence in the trunk Madam,

P. aeruginosa et environnement

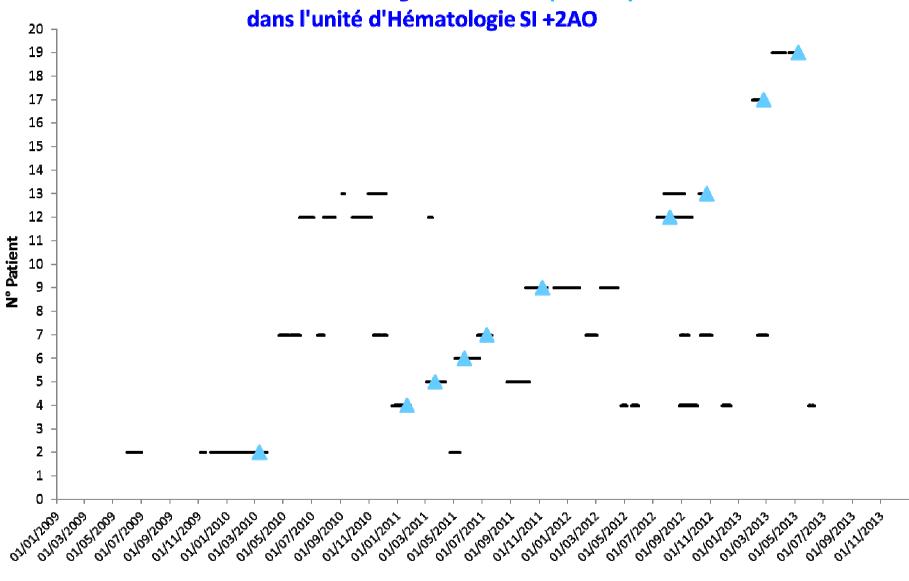
P. aeruginosa et transmission croisée en réanimation

Auteur/année/pays	Taux TC (%)
Thuong/2003/France	70,0
Ortega/2002/Pays-Bas	64,0
Berthelot/2001/France	55,6
Bertrand/2001/France	53,5
Bergmans/1998/Pays-Bas	41,7
Rogues/2007/France	41,7
Johnson/2009/USA	31,0
Bonten/1999/Pays-Bas	22,7


Hématologie, CHU Besançon


- De novembre 2009 à septembre 2013 : 21 cas d'infection ou de colonisation par *P. aeruginosa* producteur de MBL en Hématologie +**2AO**.
- Epidémie bi-clonale : clone A/IMP-19 et clone B/IMP-29.

Type diangrame	Site	Décès		
Type d'enzyme	Selles/rectum	Hémocultures	imputables	
IMP-19 (n=11)	9	2	1	
IMP-29 (n=10)	6	4	3	
Total (n=21)	15	6	4	


^{***}Signalement externe à l'ARS/CCLIN Est (décès au décours de bactériémies)

Courbe épidémique des cas de *Pseudomonas aeruginosa* MBL (IMP-19 ou IMP-29) en Hématologie SI

Diagramme synoptique des cas de Pseudomonas aeruginosa IMP-29 (clone B) dans l'unité d'Hématologie SI +2AO

Localisation des patients infectés ou colonisés par

P. aeruginosa MBL au moment de l'isolement de la souche et sites environnementaux positifs

Patient + à *P. aeruginosa* clone A / IMP-19

Patient + à *P. aeruginosa* clone B / IMP-29

Site environnemental + à P. aeruginosa clone A / IMP-19

Site environnemental + à P. aeruginosa clone B /IMP-

Sites en

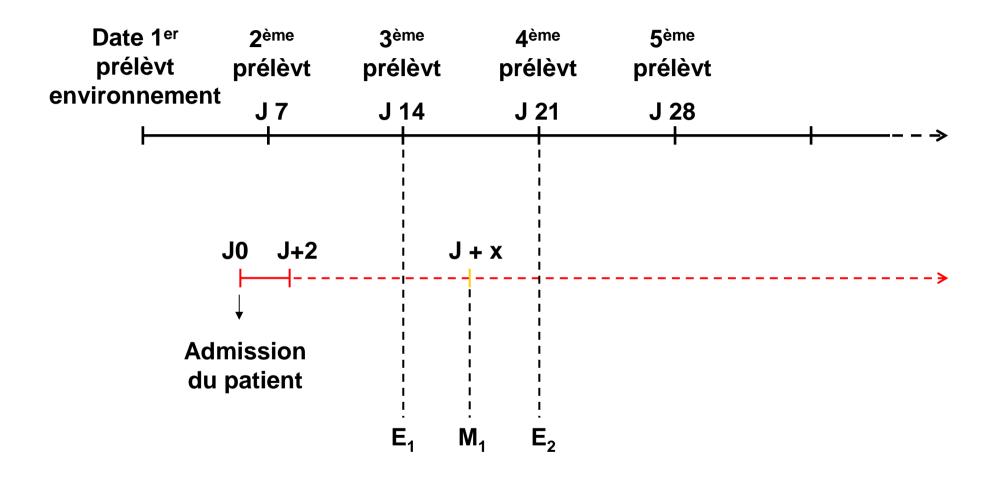
Sites environnementaux + : génotypage des souches en cours

NB:

- Le n°de l'identifiant patient (pA1, pA2...) correspon d à l'ordre de survenue du cas pour un clone donné : par exemple, pA1 et pB1 sont les cas index des clones A et B, respectivement.
- Les prélèvements+ des toilettes des chambres 2203 et 2215 sont antérieurs à cette 1ère campagne.
- La localisation des patients au moment du prélèvement+ a été obtenue à partir de Cpage.

Interprétation des données

- Ces <u>agrégats spatiaux de cas</u> (ch. 2208 et ch. 2210 +++) suggèrent une source environnementale qu'il reste à identifier (points d'eau, siphons, toilettes...) : pas de preuves directes (c.-à.-d., prélèvements d'environnement+ antérieurs à l'isolement de la souche chez le patient).
- •Epidémie impliquant 2 clones (A, IMP-19 et B, IMP-29) dont les cas index (pA1 et pB1) ont été identifiés dans les chambres <u>2208</u> et <u>2210</u>, respectivement. Ces chambres sont les épicentres du phénomène épidémique.
- Dynamique de l'épidémie (hypothèse) : contamination et dissémination à partir de ces 2 chambres.
- Contribution importante de l'environnement : nombreux réservoirs identifiés (points d'eau, siphons...), la recherche d'autres réservoirs/sources se poursuit.


Mesures mises en place progressivement

- Surveillance microbiologique des patients (dépistage) et de l'environnement (prélèvements points d'eau, toilettes...).
- Visite de risques.
- Mise en place de filtres sur les points d'eau des chambres.
 Changement robinetterie.
- Changement des siphons de toutes les chambres + prélèvements.
- Javellisation des siphons (1/semaine).
- Gestion des excréta.

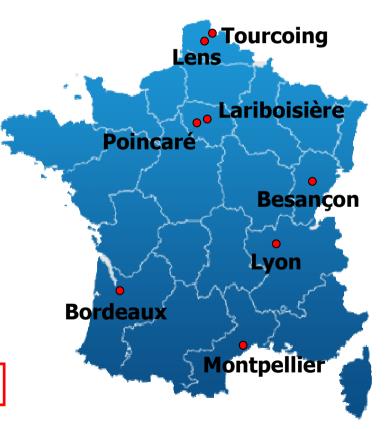
En cours...

- Suite au dernier cas du 09/09/2013 (chambre 2208) : changement de l'ensemble du mobilier des chambres 2208 et 2210 puis progressivement celui des autres chambres.
- Audit sur l'entretien de la chambre au quotidien et à la sortie du patient : rédaction/actualisation des procédures.

Principes des études : Plvts séquentiels (fréquence variable)

x : date 1^{er} prélèvement positif (à visée diagnostique ou épidémiologique)

L'environnement hydrique comme réservoir de contamination des patients ?


Auteurs/année/pays	Points d'eau +	Patients +	% *
Ferroni/1998/France	21/118 (17,7%)	3/14	21,4
Berthelot/2001/France	34/NR	3/12	25
Trautmann/2005/Allemagne	49/72 (68%)	2/14	14,2
Reuter/2002/Allemagne	150/259 (57,9%)	5/17	29,4
Vallés/2004/Espagne	93/149 (62,4%)	16/39	41,0
Blanc/2004/Suisse	21/216 (10%)	36/132	27,3
Trautmann/2005/Allemagne	60/143 (41,9%)	8/16	50
Rogues /2007/France	65/673 (9,5%)	55/484	11,4
Cholley /2008France	193/224 (86,2%)	1/14	7,1

^{*}Patients colonisés par une souche préalablement isolée dans l'environnement

Pseudomonas aeruginosa à l'hôpital Etude DYNAPYO

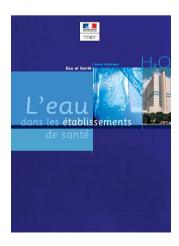
Etude prospective multicentrique PHRC 2008 – Promoteur CHU de Bordeaux

- 1700 patients de 10 services dans 8 CH
- P. aeruginosa chez les patients
 - A l'admission : 5,3 à 26,3%
 - Découverte >48h
 - de 9 à 20 % selon le service
 - de 9,5 à 15,9 pour 1000 JH
- Prélèvements des points d'eau
 - 4946 prélèvements de 237 points d'eau
 - 2 à 62 % de positifs selon le service

Facteurs associés à l'acquisition (modèle final stratifié sur le service)

Caractéristiques	Risque relatif	Intervalle de confiance à 95 %	p-value
Antécédent de colonisation ou d'infection à P.aeruginosa (oui vs non)	3,63	[1,74 - 7,57]	0,001
Ventilation mécanique invasive (oui vs non)	2,40	[1,37 - 4,19]	0,002
Score NEMS (7 30)	1,45	[1,04 - 2,02]	0,03
Point d'eau de la chambre (positif vs négatif)	1,64	[1,02 - 2,63]	0,04
Patients proches positifs pour <i>P.aeruginosa</i> (7 10 patients-jours)	1,32	[1,01 - 1,74]	0,04
Nombre cumulé de jours de traitement antibiotique actif sur <i>P.aeruginosa</i> (>7j vs ≤7j)	0,45	[0,22 - 0,90]	0,02
Nombre cumulé de jours de traitement antibiotique inactif sur <i>P.aeruginosa</i> (>2j vs ≤2j)	1,86	[1,34 - 2,59]	0,0002

Démarche globale associant

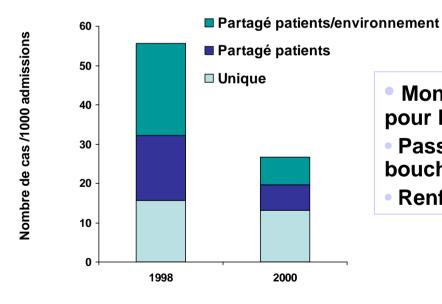

- Maîtrise du réservoir
 - Réduire les conditions favorables à la prolifération microbienne dans le réseau d'eau hospitalier
 - Lutter contre entartrage et corrosion, limiter la stagnation
 - Choix et gestion des points périphériques
- Contrôle et surveillance de l'exposition des personnes susceptibles
 - Surveiller la qualité microbiologique de l'eau
 - Définir la qualité de l'eau requise pour chaque usage

Choix et gestion des points d'eau

- Robinetterie
 - Niche bactérienne potentielle
 - électrovanne des cellules photoélectriques, clapets antiretour des mitigeurs thermostatiques, brise-jet (mousseur ou aérateur)
 - Exposée à un risque de rétrocontamination Halabi M, et al. J Hosp Infect 2001 Berthelot P, et al. Crit Care Med 2001
- Plan de maintenance
 - Changement ou périodicité d'entretien
 - Modalités d'entretien ?
 - pratiques empiriques!

- Définir la qualité de l'eau requise pour chaque usage selon la susceptibilité des patients
 - Analyse de 1561 épidémies publiées
 - 2° pathogène après Staphylococcus aureus
 - Mauvaise pratique pour usage de l'eau lors des soins++

Gastmeir P, et al. Am J Infect Control 2006


- Eau bactériologiquement maîtrisée destinée
 - aux patients les plus vulnérables
 - pour les soins au contact des muqueuses
 - pour les soins exposant à un risque infectieux particulier (rinçage terminal des fibroscopes bronchiques par exemple)

- La filtration : une stratégie ?
 - Etudes avant-après filtration des points d'eau
 - Réduction de l'incidence des infections à P. aeruginosa
 - Trautmann M, et al. Am J Infect Control 2008
 - » En réanimation : 3,9+/-2,4 à 0,8+/-0,8 patients par mois mais période avant : 97% des échantillons d'eau positifs !
 - Cervia JS, et al. Transpl Infect Dis 2010
 - » En transplantation de moelle osseuse
 - » 50% des points d'eau colonisés
 - Holmes C, et al. Am J Infect Control 2010
 - » Réduction de 68% des infections dans une réanimation
 - Pas de preuves de son efficacité

Pseudomonas aeruginosa Retour d'expérience

- Réduction du portage après implantation de mesures d'hygiène
 - Incidence de *P. aeruginosa* en réa passe de 59 à 26/1000 admissions de 1998 à 2000 ECP sur toutes les souches

- Montée en température du réseau d'eau pour la maîtrise du risque légionelle
- Passage à l'eau embouteillée pour soins de bouche et la boisson
- Renforcement des précautions standard

Pseudomonas aeruginosa Stratégie de prévention

Conclusion

- Evolution des connaissances épidémiologiques en faveur de l'existence d'une part évitable
- Nécessité de combiner
 - maîtrise transmission croisée
 - qualité de l'eau utilisée pour les soins
 - bon ou moindre usage des antibiotiques car facteurs liés à l'hôte peu modifiables
- Stratégie probablement à adapter selon le contexte épidémiologique

Points d'eaux et TC Et s'il n'y avait pas que *P. aeruginosa....*

Available online at www.sciencedirect.com

Journal of Hospital Infection

Contaminated sinks in intensive care units: an underestimated source of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the patient environment

D. Roux^a, B. Aubier^a, H. Cochard^a, R. Quentin^b, N. van der Mee-Marquet^{a,b,*}, for the HAI Prevention Group of the Réseau des Hygiénistes du Centre

Table II
Extended-spectrum beta-lactamase-producing Enterobacteriaceae
(ESBLE) contamination of the 185 sinks sampled in the nine participating healthcare institutions (HCIs)

HCI	ICU	No. of patient rooms	No. of sinks per room	No. of sinks studied	No. of ESBLE- positive sinks	Sink contamination rate
1	120-1	12	1	12	4	33.3%
2	122-1	11	1	11	9ª	81.8%
3	127-1	10	2	20	9ª	45.0%
4	134-1	10	1	10	0	0
5	136-1	14	1	14	8ª	57.1%
5	136-2	10	1	10	0	0
5	136-3	10	1	9	0	0
6	145-1	11	2	22	8	36.4%
7	152-1	4	1	4	3	75.0%
8	155-1	12	1 ^b	13	0	0
9	152-2	4	2	8	0	0
9	152-3	8	2	16	0	0
9	152-4	18	2	36	16	44.4%

Table III
Species distribution of the 60 extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBLE) recovered from the 185 sink swabs

ICU	No. of ESBLE	Klebsiella		Enterobacter			Citrobacter	Others
			pneumoniae	oxytoca	cloacae	aerogenes	asburiae	
120-1	4	1	7	1	5-0.	1	1	
122-1	10	1	1	7				1ª
127-1	10	4		2	1		2	1 ^b
136-1	9	6		2			1	
145-1	8	7	1					
152-1	3		2				1	
152-4	16	10		4			1	1°
All	60	29	4	16	1	1	7	3

ICU, intensive care unit.

a Escherichia coli.

Table IV
Risk factors for contamination of sinks and clinical areas near to the sink for extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBLE)-contaminated and ESBLE-free sinks

Risk factors	Sinks					
	All	ESBLE- contaminated (N = 57)	FSBLE- free (N = 128)	Р		
Sink use						
Handwashing only	51	7	44	P < 0.001		
Patient toilet	84	50	34			
Splash risk factor	67	23	44			
Aerator	34	9	25			
Water directed straight into the drain	103	39	64			
Visible splash when tap turned on	34	17	17			
Distance between the sink and patient bed						
<1 m	2	1	1			
1-2 m	56	22	34			
Splash barrier	12	1	11			
Routine sink disinfection	158	54	104			
Daily	116	37	79			
Weekly	20	9	11			
Bleach	39	9	30			
Daily	19	0	19	P < 0.001		
Weekly	20	9	11			
Quaternary ammonium compounds daily	56	20	36			

Conclusion

- L'environnement joue un rôle (....) dans la TC des bactéries à l'hôpital
- Etudes nécessaires pour préciser le niveau de risque
- Il est primordial d'appliquer des mesures rigoureuses pour contrôler ce risque
- Mais, une chambre d'hôpital ne sera jamais une salle blanche...

Merci pour votre attention

