Pneumonie acquise sous ventilation mécanique

Jean-Ralph Zahar
Unité de Prévention du Risque Infectieux
Groupe Hospitalier Paris Seine Saint-Denis

Liens d'intérêts:

MSD: bourse d'études, invitation à congrès, rémunération directe

Pfizer: invitation à congrès, rémunération directe

Eumedica: rémunération directe

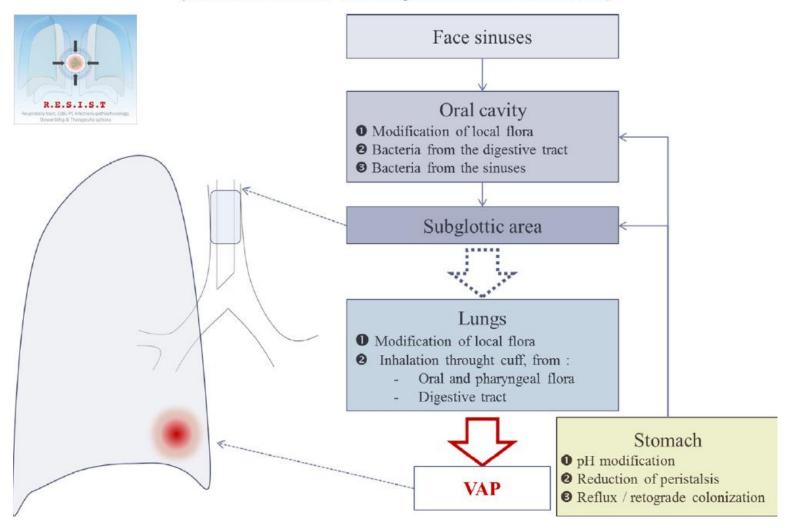
Correvio: rémunération directe

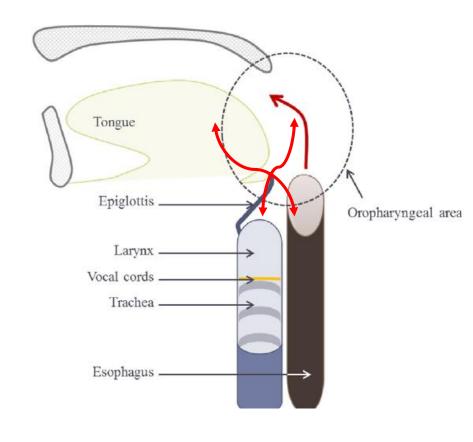
PAVM et prévention : que pouvons-nous dire de plus ?

• Les moyens de prévention sont connus

• Une réflexion collégiale au niveau nationale finalisée

Des résultats internationaux et nationaux satisfaisants


La messe est dite = « Y a plus qu'a »



Rappel: Physiopathologie

Transcolonization

(modification of bacterial flora during invasive mechanical ventilation)

Soussan et al, Journal of Crit Care 2018

Maitrise du risque infectieux : ce qui marche

Ventilation Reducing the risk

Avoid intubation

Minimize sedation

Improve physical conditions

Accompanying measures

Education

Measuring performance, providing feed back

Safety culture

Public reporting

Preventing measures

Change the ventilator cricuit

Subglottic drainage

oral care, Elevated the head of the bed (30-40), control of

endotracheal tube cuff pressure

Quelles mesures pour quels résultats?

Intervention	ICU acquired pneumonia	Ventilator- associated events	Days of invasive mechanical ventilation	ICU or hospital length of stay	Mortality
High flow oxygen via nasal cannula ^{21,22}	\downarrow or \leftrightarrow	Unknown	↓	\leftrightarrow	\downarrow or \leftrightarrow
NIPPV to avoid intubation in suitable patients ^{23–25}	1	Unknown	↓	1	↓
NIPPV to speed extubation ^{26,27}	1	Unknown	1	1	\leftrightarrow
Spontaneous breathing trials ^{28–31}	\downarrow or \leftrightarrow	↓	1	↓ ·	↓ or ↔
Minimizing sedation (SAT or sedation protocols) ^{37–39}	\downarrow or \leftrightarrow	↓	↓	1	\leftrightarrow
Early mobility ^{39,40}	\downarrow or \leftrightarrow	Unknown	↓	\leftrightarrow	\leftrightarrow
Head of bed elevation ⁴⁹	1	Unknown	\leftrightarrow	\leftrightarrow	\leftrightarrow
Conical (tapered) endotracheal tube cuffs ^{55,60}	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
Ultrathin polyurethane endotracheal tube cuff ^{58,59,111}	\downarrow or \leftrightarrow	Unknown	\leftrightarrow	\leftrightarrow	\leftrightarrow
Frequent or automated cuff pressure monitoring 61,62	\downarrow or \leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
Subglottic secretion drainage ^{69,112}	1	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
Selective digestive decontamination 72,73,80,82,83	1	Unknown	\leftrightarrow	1	↓ ^a
Oral care with chlorhexidine ^{31,73,85–88}	\leftrightarrow	↑ or ↔	\leftrightarrow	\leftrightarrow	↑ or ↔
Stress ulcer prophylaxis ^{31,96,101}	↑or ↔	↑ or ↔	\leftrightarrow	\leftrightarrow	\leftrightarrow
Probiotics 102	↓	Unknown	\leftrightarrow	\leftrightarrow	\leftrightarrow

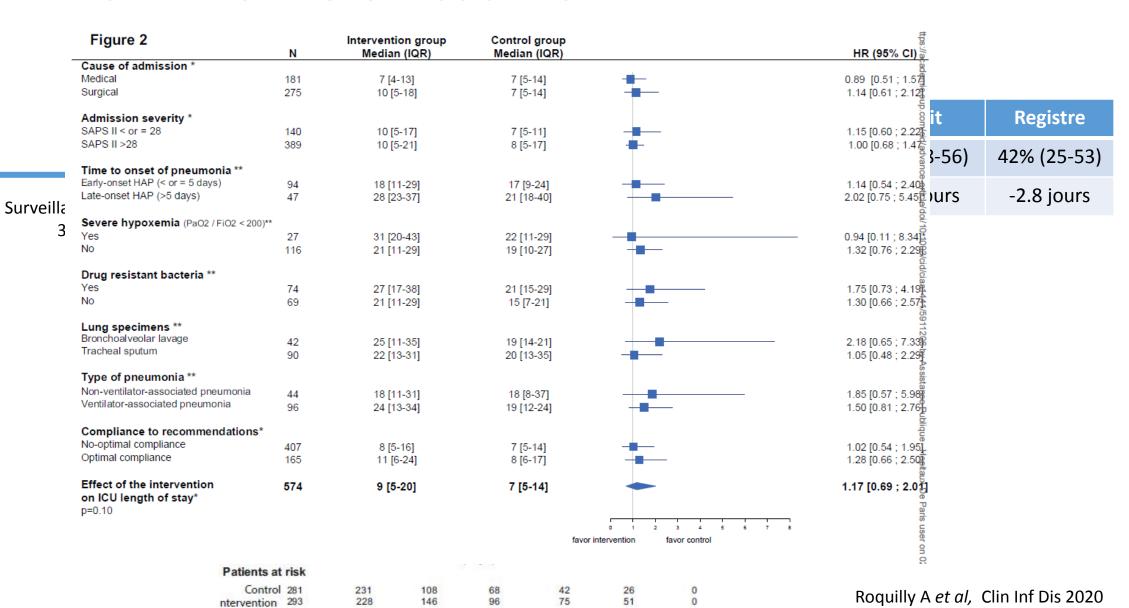
Quelles questions restent en suspend?

- Quelles mesures sont à inclure dans les différents bundle ?
 - le, quels sont les éléments de base ?

• Comment mettre en œuvre les bundle au sein de mon institution ?

• Existe-t-il des nouveautés quant à la prévention ?

• Faut il mesurer/ évaluer différemment les actions mises en œuvre ?


Quelles mesures/ évidence pour les bundles?

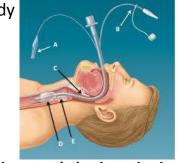
Mesures	Réduction de la durée de ventilation	Réduction de la Mortalité	Réduction des Evènements liés à la Ventilation
Interruption de la sédation	+	+	
Respiration spontanée	+	+	+
Elévation de la tête du lit	+		
Prophylaxie MTE			
Bains de bouche à la Chlorhexidine		-	
Prévention de l'ulcère de stress			

^{+ =} significativement associé à un effet positif

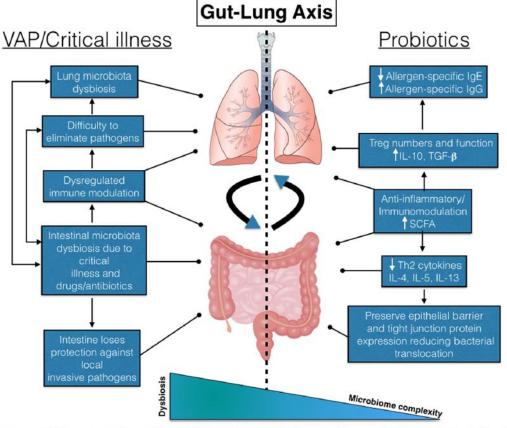
La prévention de l'ulcère de stress était la seule mesure associée à la VAP

Comment mettre en œuvre?

Comment mettre en œuvre?


Model attribute, implementation strategy	Key features
Engagement	
Develop a multidisciplinary team	Team includes representatives from every discipline that cares for a patient receiving mechanical ventilation, including, at a minimum, unit directors, physicians, nurses, and respiratory therapists; other disciplines that could strengthen the team are infection preventionists, pharmacists, nutritionists, physical therapists, and occupational therapists; the multidisciplinary team sets the VAP improvement program goals, defines each step to implement the program, and monitors progress towards reaching the goals
Involve local champions	Identify a local champion (either formally or informally, who is often a physician or nurse with dedicated time, to lead the team; local champions engage stakeholders, educate peers about best practices, maintain momentum, and establish buy-in and ownership among staff and administrators; local champion should know their hospital's interests and needs, know how to shape strategies to match local unit culture, monitor progress, and evolve interventions to maintain progress; establish early and continued communication between local champion and frontline staff
Encourage peer networking	Horizontal networking of peers across units or hospitals promotes and increases compliance with evidence-based practices; encourages collaboration, analysis of performance, accountability, commitment to specific goals, brainstorming solution to common problems, and understanding local strengths and weaknesses

Existe-t-il des nouveautés ?



Polyurethane or Conical Cuffs

Philippart F et al, AJCCM 2015 Jaillette et al, ICM 2017 Lacherade JC, Demeter study

Continous subglottic aspiration

Fig. 1 The gut-lung axis in ventilator-associated pneumonia (VAP) and proposed working mechanism of probiotics. IL interleukin, TGF-β transforming growth factor-β, SCFA short-chain fatty acids

Wiersing *et al*, Crit Care 2017 Bo *et al*, Cochrane Database 2014

Existe-t-il des nouveautés ?

Author, year	Study design	N (intervention vs. control)	Analyzed <i>N</i> (intervention vs. control)	Details of intervention	Primary outcome							
Barraud et al., 2010 [26]	Blinded RCT	87 vs. 80	87 vs. 80	Bifidobacterium bifidum, Lactobacillus acidophilus, Lactobacillus casei, and Lactobacillus rhamnosus GG, 1/ day 2 × 10 ¹⁰ CFU in the stomach	28-day mortality	Table 2 Incide ventilator days	ntage of total p	oatients a	s and number of VAP episodes/10 Incidence VAP)0	
Forestier et al., 2008 [27]	Blinded RCT	118 vs. 118	102 vs. 106	Lactobacillus casei rhamnosus, $1/\text{day } 1 \times 10^9 \text{ CFU}$ in the mouth and stomach	Time of first Pseudomonas aeruginosa acquisition	Author, year	Intervention group (percentage of patients [n = patients])	Control group (percentage of patients [n = patients])	Relative risk (95% CI)	Intervention group (VAP episodes/ 1000 ventilator days)	Control group (VAP episodes/ 1000 ventilator days)	
Klarin et al., 2008 [28]	Open-label RCT	25 vs. 25	23 vs. 21	Lactobacillus plantarum 299, 2/ day 1×10^{10} CFU in the mouth	Subsequent samples	Morrow et al., 2010 [29]	19.1% (n = 68)	40.0% (n = 70)	0.5 (0.3 to 0.8)			
Knight et al., 2009 [33]	Blinded RCT	150 vs. 150	130 vs. 129	Lactobacillus paracasei, Lactobacillus plantarum,	VAP	Rongrungruang et al., 2015 [32]	24.0% (n = 75)	29.3% (n = 75)	0.8 (0.3 to 0.6)	22.6	30.2	0.8
				Leuconostoc mesenteroides, and Pediococcus pentosaceus, 2/day 1 × 10 ¹⁰ CFU in the stomach		Klarin et al., 2008 [28]	4.3% (n = 23)	14.3% (n = 21)	0.3 (0.0 to 2.7)			
Morrow et al.,	Blinded	73 vs. 73	68 vs. 70	Lactobacillus rhamnosus GG,,2/	VAP incidence	Knight et al., 2009 [33]	9.0% (n = 130)	13.0% (n = 129)	0.7 (0.4 to 1.4)	13.0	14.6	0.9
2010 [29]	RCT			day 1×10^9 CFU in the oropharynx and stomach		Forestier et al., 2008 [27]	23.5% (n = 102)	22.6% (n = 106)	1.0 (0.6 to 1.7)			
Rongrungruang et al., 2015 [32]	Open-label RCT	75 vs. 75	75 vs. 75	Lactobacillus casei Shirota, 1/ day 8 × 10 ⁹ CFU in the mouth and stomach	VAP	Barraud et al., 2010 [26]	26.4% (n = 87)	18.7% (n = 80)	1.4 (0.8 to 2.5)	23.0	14.6	1.6
Shinotsuka et al., 2008 [30]	Open-label RCT	16 vs. 12	12 vs. 16	Lactobacillus johnsonii La1, 2/ day 1×10^9 CFU in the stomach	Colonization of gastrointestinal tract and trachea	Zeng et al., 2016 [31]	36.4% (n = 118)	50.4% (n = 117)	0.7 (0.5 to 1.0)			
Zeng et al., 2016 [31]	Open-label RCT	125 vs. 125	118 vs. 117	Bacillus subtilis and Enterococcus faecalis, 3/day 9×10 ⁹ in the stomach	VAP				Van F	Ruissen, ICM Expe	erimental 20)19

No. of RCTs; No. of Patients (N);

P Value Intervention $I^2, \%$ Relative Risk (95% CI) Acidified enteral feeding 1; 120; NA 2.07 (.90-4.49) .09 Tracheal cuff monitoring 2; 264; 0 .49 1.22 (.70-2.11) .59 **PEEP** 1; 127; NA 1.17 (.66-2.06) .11 Silver-coated ET 1; 1509; NA 1.14 (.97-1.34) Physiotherapy 2; 204; 81 1.14 (.20-6.59) .88 Patient position 5; 785; 0 .65 1.06 (.82-1.38)) Decreased gastric content 3; 810; 0 1.06 (.83-1.35) .65 Tracheal saline instillation 1; 262; NA .71 1.05 (.82-1.33) Ulcer prophylaxis 16; 3365; 0 1.00 (.89-1.13) .97 SOD 23; 9666; 0 0.99 (.92-1.08) .89 Subglottic secretion drainage 9; 2241; 0 .85 0.98 (.84-1.15) Heat moisture exchanger 13; 2431; 0 .78 0.98 (.86-1.12) Closed suctioning system 5; 909; 0 0.98 (.83-1.17) .85 Aerosolized antibiotic 5; 450; 23 0.95 (.66-1.38) .80 Post pyloric feeding 6; 582; 0 0.93 (.67-1.28) .64 Probiotic/symbiotic 13; 1569; 23 0.89 (.66-1.18) .41 Early tracheotomy 6; 1050; 45 0.85 (.64-1.12) .24 SDD 30; 10 227; 16 .001 0.84 (.76-0.92) Sinusitis prophylaxis 1; 399; NA .06 0.80 (.63-1.01) Early enteral feeding 1; 150; NA 0.75 (.42-1.35) .34 Phytotherapy 1; 36; NA .65 0.67 (.13-3.53) Overall 145; N=37156; 4 0.95 (.92-.99) .02 0.5 0.75 1.0 2.0 Intervention Control

Intervention	ICU acquired pneumonia	Ventilator- associated events	Days of invasive mechanical ventilation	ICU or hospital length of stay	Mortality
High flow oxygen via nasal cannula ^{21,22}	\downarrow or \leftrightarrow	Unknown	↓	\leftrightarrow	\downarrow or \leftrightarrow
NIPPV to avoid intubation in suitable patients ^{23–25}	1	Unknown	↓	+	↓
NIPPV to speed extubation ^{26,27}	1	Unknown	1	1	\leftrightarrow
Spontaneous breathing trials ^{28–31}	\downarrow or \leftrightarrow	↓	1	1	\downarrow or \leftrightarrow
Minimizing sedation (SAT or sedation protocols) ^{37–39}	↓ or ↔	↓	1	1	\leftrightarrow
Early mobility ^{39,40}	↓ or ↔	Unknown	1	\leftrightarrow	\leftrightarrow
Head of bed elevation ⁴⁹	1	Unknown	\leftrightarrow	\leftrightarrow	\leftrightarrow
Conical (tapered) endotracheal tube cuffs ^{55,60}	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
Ultrathin polyurethane endotracheal tube cuff ^{58,59,111}	↓ or ↔	Unknown	\leftrightarrow	\leftrightarrow	\leftrightarrow
Frequent or automated cuff pressure monitoring 61,62	↓ or ↔	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
Subglottic secretion drainage ^{69,112}	1	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
Selective digestive decontamination 72,73,80,82,83	1	Unknown	\leftrightarrow	1	↓ ^a
Oral care with chlorhexidine ^{31,73,85–88}	\leftrightarrow	↑ or ↔	\leftrightarrow	\leftrightarrow	↑ or ↔
Stress ulcer prophylaxis 31,96,101	↑or ↔	↑ or ↔	\leftrightarrow	\leftrightarrow	\leftrightarrow
Probiotics ¹⁰²	1	Unknown	\leftrightarrow	\leftrightarrow	\leftrightarrow

Roquilly et al, Clin Inf Dis 2015

better

better

Conclusions

• Rien de nouveau « opérationnel »

Abandon de certains composants des « bundle »

Nombreux arguments pour un rôle du et « des » microbiotes

• En attendant la « manipulation » des microbiotes......